The Internet of Things (IoT) is overpopulated by a large number of objects and millions of services and interactions. Therefore, the ability to search for the right object to provide a specific service is important. The merger of the IoT and social networking, the Social Inter- net of Things (SIoT), has made this possible. The main idea in the SIoT is that every object in the IoT can use its friends’ or friends-of-friends’ relationships to search for a specific service. However, this is usually a slow process because each node (object) is required to manage a large number of friends. This paper addresses the issue of link selection of friends and analyzes five strategies in the literature. Then it proposes a link selection strategy using the Genetic Algorithm (GA) to find the near optimal solution. The results show an improvement over the examined strategies in terms of several parameters.
The Internet of Things (IoT) is considered the next evolution of the current global Internet [1]. The main idea is to increase its ability to gather, analyze, and distribute data and transform them into information, knowledge, and wisdom. However, it is not about connecting people. It is about connecting things, hence its name. It covers many possible application areas, and it enables objects to connect anytime, anywhere, and to anything.
In the IoT, a thing could be anything and everything, from a mobile device or a dishwasher to a controlling system of a car or a plane. It can be absolutely anything that moves or does not move. If it has an IP address, it is possible to connect it or track it. Thus, these things are not just smart phones and tablets; they are everything [2].
The IoT includes a vast number of objects that generate information about the physical world. This information can be obtained through standard Web browsers. In addition, the IoT can provide new services to end-users. However, in [3], the authors explained that the search of each service in the IoT is huge because the number of objects that connect to the network is continuously and rapidly increasing.
In addition, the traditional interaction model is based on the idea that humans are looking for information (human- object interaction). However, in the IoT, this model must change to object-object interaction, which means that an object will look for a service from other objects. In the literature, several models were proposed for real-time search [1,4]. However, these traditional models employ centralized systems for their engines; hence, they do not scale properly with the number of devices and queries. In order to overcome this shortage, a new approach based on the Social Internet of Things (SIoT) was proposed [4].
The SIoT can be used as an analog term for “social network of intelligent objects” [5]. Therefore, the SIoT can be thought of as the ability to have integration between the IoT and social networks in an intelligent way [4,6]. In the SIoT, objects will have the ability to search for a desired service using its friends’ objects through available connections between them (i.e., friendship connections). As a result, each node will eventually have a large set of nodes (friendships) to manage, which will negatively affect the search time. Therefore, it is advisable to limit the number of friendships for each node. Moreover, choosing which friendships to keep will affect the search efficiency [7].
In the SIoT, every node is an object that can establish social relationships with other things in a predefined way, according to the rules that where set by the owner [6]. Many types of relationships exist [8]:
This paper addresses the issue of link selection of friends and analyzes five strategies in the literature for this purpose. It then proposes and implements a link selection strategy using the Genetic Algorithm (GA) to find the near optimal solution (near optimal link selection).
The rest of the paper is organized as follows. Section 2 discusses some works that are related to this topic. Section 3 evaluates the performance of some strategies that are proposed in the literature. Section 4 includes the authors’ proposed GA for link selection, and Section 5 discusses sample performance results. Finally, Section 6 provides some conclusion notes.
Object search in IoT is considered an important issue due to its large and complicated search space. This complication rises from the fact that every object in the IoT can use its friends’ or friends-of-friends’ relationships to search for a specific service. The proposed Genetic algorithm based technique was introduced to overcome the limitations of some of the art of the state algorithms. The paper first discussed five heuristic search functions introduced in the literature. A new genetic algorithm based search algorithm is then introduced to find the near optimal solution (near optimal link selection).
The proposed strategy for the link selection in the SIoT achieves better results in terms of average degree and average cluster coefficient. However, the authors’ strategy gives a slight enhancement in terms of the average shortest path length.
For future work, the authors recommend designing and implementing a hybrid GA fitness function to overcome the shortcoming of the traditional function. In the suggested function, the optimal solution would be the chromosomes with the shortest path and the maximum cluster coefficient.
Maadico is an international consulting company in Cologne, Germany. This company provides services in different areas for firms so they will be able to interact with each other. But specifically, raising the level of knowledge and technology in various companies and assisting their presence in European markets is an aim for which Maadico has developed … (Read more)